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1. Introduction 

Detection of people is one of the important tasks in intelligence, surveillance, and reconnaissance 

(ISR) requirements. For example, in perimeter protection, one would like to detect any intruders 

during day and night so that proper authorities can be alerted for appropriate action. In urban 

operations, one would like to make sure once a building is evacuated nobody entered the 

building—this implies, sensors should detect people entering the building. Homeland Security 

often requires detection of illegal aliens crossing the border. There are numerous other 

applications where personnel detection is important.  

Detection of people is a challenging problem. For example, acoustic sensors may analyze the 

sound and determine if there is any human voice present. However, if the people are not talking, 

the acoustic sensors may not be able to detect people based on the voice analysis. So, other 

sensors such as seismic, passive infrared (PIR), sonar, ultrasound, radar, magnetic, and electric 

field (E-field) sensors should be used for detection of people, since no single sensor will be able 

to detect in every situation and circumstance. Notice that the emphasis is on non-imaging 

sensors, since they tend to be low power and long lasting. Video sensors are often high power 

consuming and require frequent replacement of batteries; hence, there is a higher chance of 

compromising the mission. As such, the sensors used should consume little power and last long 

on batteries. For these reasons, majority of the sensors used for personnel detection tend to be 

acoustic, seismic, PIR, magnetic, E-field sensors, to name few. However, when one is collecting 

the data for development of algorithms, truth data are vital. For this purpose, we use video 

cameras to capture the truth data.  

The people participated in this data collection are listed below: 

1. U.S. Army Research Laboratory (ARL), Adelphi, MD, USA 

2. Night Vision and Electronic Sensors Directorate (NVESD), Ft. Belvoir, VA, USA 

3. Space & Naval Warfare Systems Command (SPAWAR), San Diego, CA, USA 

4. University of Mississippi, Oxford, MS, USA 

5. University of Memphis, Memphis, TN, USA 

6. Canadian Defense Organization 

7. Israeli Team 

8. Finnish Defense Organization 

We now present some descriptions of the equipment used by various parties.  
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1.1 ARL Data Collection System 

ARL has brought three sensor systems, which are used to collect the data for the choreographed 

scenarios. It also brought another three sensors systems to collect the data of animals in their 

natural habitat— and the data are collected day and night.  

One of the commercially available data collection systems, namely, “Wavebook,” is primarily 

used for data collection for choreographed scenarios where people and animals walked along the 

trails in an orderly fashion. It has eight channels for data acquisition. The sampling rate, and the 

aliasing filters can be preprogrammed as desired. The following sensors are used on the 

Wavebook:  

• Acoustic, seismic, PIR and ultrasonic sensor suite 

An automatic data collection unit (ADCU) is used at remote sites to collect the data around the 

clock for animals in their natural habitat. The system is capable of collecting data on eight 

channels at 4 k samples per second. The sensor suite consists of the following: 

• Acoustic, seismic, PIR and ultrasonic sensor suite 

The sensors, namely, acoustic, seismic, PIR and ultrasonic sensors, used for data collection are 

same as the ones used during the 2009 data collection effort and thus have been described 

previously (36). The Wavebook data collection system with sensor suite deployed near trail is 

shown in figures 1 and 2, the latter of which shows one of the scenarios being enacted during the 

data collection. Figure 2 clearly shows several people and animals walking the trail. 

  
           (a)                                                                             (b) 

Figure 1. (a) ARL sensor deployment and (b) new profiling sensor. 
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Figure 2. People and animals walking on the trail. 

1.2 Night Vision Data Collection System 

NVESD brought a high-resolution camera to the field to collect data. The camera system is 

shown in figure 3. The system included a fish-eye lens to see the targets coming from all around.  

 

Figure 3. NVESD camera system. 

1.3 SPAWAR Data Collection System 

SPAWAR brought two magnetic sensors and deployed them along the trail. The sensor is 

sensitive enough to detect people passing by carrying some ferrous material (e.g., keys). The 

sensors are shown in figure 4. 
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Figure 4. SPAWAR’s magnetic sensors. 

1.4 University of Mississippi Data Collection System 

University of Mississippi deployed a similar system to ARL’s system with acoustic, seismic and 

ultrasonic sensors. The deployed system is shown in figure 5.  

 

Figure 5. University of Mississippi sensors. 

1.5 University of Memphis Data Collection System 

University of Memphis have been working on developing new sensor system to replace high 

power consuming, high bandwidth requiring imaging sensors such as a camera. They developed 

a pyroelectric array profiling sensor with fewer pixels to capture the essence of an image. The 

deployed sensor is shown in figure 6.  
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Figure 6. Profiling sensor by University of Memphis. 

1.6 Defense Research and Development Canada SASNet 

The Canadian Defense Organization has developed a low-cost network called Self-healing 

Autonomous Sensor Networks (SASNet) for detecting and tracking targets. Each sensor node in 

the SASNet consists of acoustic, seismic, and magnetic sensors. Figure 7 shows some elements 

of SASNet. 

 

Figure 7. SASNet. 

1.7 Israeli Team 

The Israeli team has deployed their system called “Pearls of Wisdom,” which consists of 

acoustic, seismic, magnetic, and imaging sensors. Their system is shown in figure 8. 
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Figure 8. Pearls of Wisdom system. 

2. Signal Processing 

In this section, we present some of the advances made in seismic and ultrasonic signal processing 

for personnel detection. Most of the advances in signal processing concentrated on acoustic 

(ultrasound) and seismic sensors as they offer high fidelity to distinguish people from animals. 

2.1 Seismic Signal Processing 

The main purpose of a seismic sensor is to detect footfalls of humans walking within the 

receptive field of the sensor. There is a considerable amount of literature (1–6) in footstep 

detection. Traditionally, researchers have focused on estimating the cadence. However, if 

multiple people are in the vicinity of the sensor and walking, it is difficult to estimate the 

cadence of an individual person. Moreover, if there are animals, it is difficult to differentiate 

multiple people walking and animals walking by observing the footfalls. However, multiple 

footfalls superimpose on one another, resulting in a frequency of ‘c’ Hz (where ‘c’ is an effective 

cadence of multiple walkers). So, a seismic algorithm can look for harmonics of cadence or 

several strong frequency components between 2 to 15 Hz to distinguish single and multiple 

walkers. 

The seismic algorithm used is a multivariate Gaussian classifier (1–7) with the feature set 

consisting of amplitudes of the frequency bins from 2 to 15 Hz. Then, an algorithm is used to 

estimate the posterior probability of footsteps present. 

The algorithm only determines whether there are footsteps present. In order to detect the 

presence of humans, it is necessary to determine whether these footsteps belong to a human or an 

animal. For this, we invariably turn to acoustics. If there is voice, it can be detected and 

identified as a human voice based on the formants. In order to distinguish people and animals 
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when no voice is present, we analyze the sound generated by the animals walking. When a single 

hoof of a horse strikes the ground, it produces a sound pattern that is distinct from that of a 

human foot. Figure 9 shows the signature of horse walking (for a period of 6 s) before and after 

noise removal.  The noise removal is performed using empirical mode decomposition (4, 6) of 

the original signal into various component signals. From figure 9, it is clear that there are three 

peaks uniformly distributed in each time interval of 1 s. This indicates the cadence of the horse to 

be approximately 2.8 to 3 Hz. Since the cadence of a person is around 1.5 to 2 Hz, one can infer 

the presence of animals. 

 

Figure 9. (a) Hoof signature and (b) hoof signature after noise removal. 

When a person walks, the heel of the foot strikes first and then the toe end of the foot strikes, 

rubbing against the ground, creating a unique seismic signature compared to that of an animal 

(figure 10). Animals, in general, walk on their hoof or “toe” (the horse ankle and heel or fetlock 

do not strike the ground), which strikes the ground producing signatures that are different from 

those of people. Both the signatures have different frequency response on the same ground. In 

section 2.1.1, we present a technique that uses the differences in frequency responses to 

distinguish both types of footfalls. 
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Figure 10. Seismic signature of a single footstep of a person. 

2.1.1 Discrimination of Animal and Human Seismic Signatures 

For a single walking person, detection of cadence and human footstep signature is relatively 

easy. However, when animals and people are walking in the vicinity of a seismic sensor, the 

detection of human foot signature is not as straightforward. If there are multiple sensors 

collecting the same signatures, one can use principal component analysis (PCA) or independent 

component analysis (ICA) (9) to separate the human footstep signatures from the animal 

footsteps depending whether the noise is Gaussian or not. Most of unattended ground sensor 

(UGS) systems consist of only one sensor per modality, that is, one acoustic, one seismic, etc., so 

it is not possible to use the PCA or ICA technique for blind signal separation, since PCA or ICA 

require at least n number of sensors to separate n sources. In acoustics, several researchers  

(10–14, 37) have developed techniques for single channel source separation where they 

attempted to separate signals from two human speakers from a single microphone. In almost all 

the cases, they used short time Fourier transform (STFT) and non-negative matrix factorization 

(NMF) techniques.  

The NMF technique was first introduced by Lee and Seung (15, 16) and was adopted by others 

to minimize the cost function 

   
t

tk

k

tkkt WWHX
,

1

,

2

,,,
2

1



  , (1) 

where X is the STFT with variables in frequency ω and time t; H and W are the basis and weight 

matrices; and λ controls the sparcity of the weights, that is, fewer weights, hence fewer basis 

functions, will be used. The fact that the elements of tX , , H, and W are all non-negative gives 

the algorithm the name non-negative matrix factorization. We use discrete cosine transform 

(DCT) instead of STFT to avoid the problems arising due to complex signals. Let 
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   txdctX ii   (2) 

be the DCT of the signal  txi . It is found that first 500 of the DCT coefficients are sufficient to 

reconstruct the time domain signal with negligible distortion. It is worth noting that earlier 

versions of JPEG compression schemes used DCT. So Xi denotes the first 500 DCT coefficients. 

Let iB  and i   denote the positive and negative DCT coefficients such that iii BX  . Let the 

matrix   iXX ip  ;  be the set of DCT coefficients for all the training data corresponding to 

the people. Then, the matrix ][ pX  can be written as 

 ][][][   ppp XXX  (3) 

with matrix  ip BX  ][  representing the positive DCT coefficients and matrix  ipX  ][  

representing the negative DCT coefficients of pX . Similarly, aX represents the set for animals. 

After performing the NMF on the matrices, we get 

     

pppp XHWX ; Wp Hp (4) 

     

aaaa XHWX ; Wa Ha (5) 

The matrices W and W represent the weight matrices and the matrices H and H  correspond to the 

bases. Once the basis matrices are available, they can be used to represent the DCT coefficients 

Xt of a test signal x(t) as weighted sum of their components. The algorithm to estimate the 

weights and bases (subset of H and H ) is given below: 

Algorithm 1: 

• Step 1: Normalize the test signal x(t) after removing the mean. Compute Xt = dct (x(t)). Let 

Xt = Bt −βt, where Bt and βt denote the positive and negative DCT coefficients.  

• Step 2: Estimate the weights  rwwwW ,,, 21   and  rvvvV ,,, 21   such that 

 |Bt – WH|
2
 + |βt – V H  |

2
 ; such that 0 ≤ wi, vi ≤ ub; ∀i ∈ {1, 2, · · · , r} (6) 

is minimum, ub is typically 1. One may use any constrained nonlinear optimization 

program such as the “fmincon” function in MATLAB to determine the weights. 

• Step 3: Non-zero weights w and v give the bases used to represent Xt. 

• Step 4: Reconstruct the signal )(ˆ tx  by taking the inverse DCT of the difference  

(W H−V H). 

We used NMF technique (18) to separate human and animal signatures from a single seismic 

channel data. In order to verify the technique, we took two seismic signals, one from a person 

and another from a horse walking, and mixed them, as shown in figure 11. Then the NMF 

technique is used on the mixture to separate the signals. The results of NMF technique is shown 
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in figures 12 and 13. From these figures, we notice the reconstruction (separation) of the signals 

is good except in the places where there is noise. The NMF algorithm is further used on several 

sets of data collected on a single person, single horse, and both a horse and a person walking. 

The sum of the weights corresponding to the bases of horse Sh and a person Sp determine whether 

the extracted signature belongs to a horse (animal) or a person depending on whether Sh > Sp. The 

values of Sh and Sp are plotted in figure 14 as 'o' and '*', respectively. From the figure, we find 

that the NMF algorithm provided Sp > Sh and is higher than the threshold shown by a solid line at 

0.7 for the data with one person walking majority of times and Sh > Sp for the case when a horse 

was walking. When both a person and a horse walked, both Sh and Sp are above the threshold, 

indicating that both the targets are present. So we can detect and classify the footprint signatures 

of people and animals even when both are present at the same time. Traditional classification 

algorithms classify only any one of the targets present but not both simultaneously. They fail if 

both targets are present. Several results using NMF techniques are presented in the literature (39, 

40, 43, 44). 

 

Figure 11. Mixture of a signature from a person and a horse. 
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Figure 12. Extraction of human signature. 

 

Figure 13. Extraction of horse signature. 

 

Figure 14. Results of NMF algorithm on signature data  

of (a) man, (b) horse, and (c) man and horse  

walking. 
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2.2 Ultrasonic Sensor Modeling and Ultrasonic Signal Processing 

In this section, we present the analysis of ultrasonic sensor data to characterize and discriminate 

both people and animals. The ultrasonic sensor is an active sensor that radiates a 40-kHz 

ultrasonic signal and captures the signals that are bounced back by the target in its beam. The 

principle of operation is same as radar (19). The micro-Doppler returns due to the swinging of 

the arms, legs, and torso of a person or an animal are analyzed. We take advantage of these 

Doppler returns from the limbs to classify the targets. However, in order to understand the type 

of Doppler signatures that would be generated by the swinging of arms, legs, and torso of various 

targets, it is necessary to model these parts and compute the Doppler values.  

Our University of Mississippi partners Bradley and Sabatier (20, 21) have explained the 

observed human-gait features in Doppler sonar grams by using the Boulic-Thalmann (BT) (22) 

model, shown in figure 15, to predict joint angle time histories and the temporal displacements of 

the body’s center of mass. In the BT model, body segments are represented as ellipsoids. 

Temporally dependent velocities at the proximal and distal end of key body segments are 

determined from the BT model, as shown in figure 16. Doppler sonar grams are computed by 

mapping velocity-time dependent spectral acoustic cross sections for the body segments onto 

time-velocity space, mimicking the STFT used in Doppler sonar processing. Figure 17a shows 

the estimated velocities using the model for various parts of the body for a 6-ft-tall person. The 

Doppler is related to the radial velocity rv  of the target and is given by ,
2

c
r

d f
c

v
f    where c is 

the propagation velocity of sound and fc is the radiated carrier frequency. The detailed 

computation of velocities of various limbs can be found in reference 20. Similar, models are 

developed (21) for a quadruped, such as a horse. Figure 17b shows the estimated velocities for a 

horse. The models are validated using experimental results and have been reported previously 

(41, 42, 45, 47). 

 
(a) (b) 

Figure 15. (a) Human model as a stick figure and (b) horse model. 
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Figure 16. Estimation of velocities of various parts of body. 

 

Figure 17. Estimated velocity (Doppler) for (a) a person walking and (b) a horse walking. 

Figure 18 shows the Doppler signature collected for a person walking in one of the scenarios. 

Each sensor records the data when the person walks by the sensor. The data collection is done 

when a person (or a horse) walks toward the sensor at close range (figure 18b) and when the 

person (or a horse walks away from the sensor at a distance and to one side of the sensor [figure 

18c]). In the first case, the signal strength is high and the Doppler returns from the various parts 

are clearly visible, while in the latter case the Doppler returns are weak and the features are not 

clearly visible. Hence, we developed two algorithms to classify the targets, namely, (1) when the 

signal-to-noise ratio (SNR) is high (>6 dB) and (2) when the SNR is low. 
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Figure 18. (a) Doppler returns for a person walking, (b) measured Doppler when a person  

walks towards the sensor, and (c) Doppler returns when a person walks away  

from the sensor. 

2.2.1 Case 1: High Signal-To-Noise Ratio (SNR) 

In this case, the targets walk in front of the sensor at a close proximity, and the atmospheric 

(wind) effects on the received signal are minimal. This is the case where some model features 

can be clearly identified, and the classification can be made based on the model. An example of 

high SNR is shown in figure 18b. In order to characterize the target either as a person or an 

animal, we look for (a) cadence, (b) maximum and minimum variation in the Doppler frequency 

due to limbs, and (c) the sequential nature of limb movements. Figure 19 shows the enlarged 

version of figure 18b. It shows the average Doppler of the torso (average velocity of a person 

walking) and the Doppler due to arms and legs. When the arms and legs swing 

forward/backward, we get a Doppler above/below the average (the sinusoidal line above/below 

the average line). The cadence is estimated as 
t

1 , where t is the time between two peaks of a 

sinusoidal curve. The cadence is estimated to be 1.8 Hz for the person. The maximum and 

minimum Doppler frequency of limbs with respect to the average is found to be ±800 Hz, and 

this will be contrasted with the values for an animal. The vertical lines on figure 19 are drawn to 

show the lag (sequential nature of limb movement) between the top and lower sinusoidal curves. 

The lag is ~0.1 s. 
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Figure 19. Measured Doppler output for a person. 

Figure 20 shows the ultrasonic returns from a horse walking. One clear distinction between the 

Doppler signatures for a person and a horse walking is that the signature for a person is 

sinusoidal in nature. Horse motion is much more complex, as there are many more moving parts 

for a horse than a person. Another distinct feature for the horse is that the Doppler returns below 

the “average torso Doppler” are significantly less. The maximum variation of Doppler for the 

horse (~1500 Hz) is higher compared than that for a person (~1100 Hz). Figure 21 shows the 

Doppler energy plot for a horse walking. The peaks in figure 21 show the periodic nature of a 

horse walking; the cadence can be estimated from it. The cadence of the horse is estimated to be 

around ~1.7 Hz. This cadence value is significantly low for a horse; this is due to the fact that the 

horse is made to walk slowly on purpose. This is also verified using the seismic data. The 

cadence of the horse is found to be close to the cadence of a person walking. Hence, cadence 

alone cannot be used to distinguish a person from a horse or any other quadruped. From  

figure 21, we notice that each peak has an adjacent smaller peak marked by ellipses in the figure. 

This double peaked result is characteristic of a quadruped walking and is also seen in the model 

shown in figure 17b. The time difference between two adjacent peaks is ~0.12 s. The algorithm 

to distinguish people and animals using the features described earlier is given in the flowchart 

shown in figure 22. 
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Figure 20. Measured Doppler for a horse. 

 

Figure 21. Doppler energy in 500‒1100 Hz band for a horse walking. 

 

Figure 22. Classification of ultrasonic data. 

2.2.2 Case 2: Low Signal-To-Noise Ratio 

In the event the signal returns are weak for any reason (such as prevailing winds, the target being 

farther than optimal distance, the target being illuminated by the ultrasonic transducer at an 

angle, etc.), the features observed in the case of high SNR may not be present, as seen in  

figure 18c. For low SNR data, it is appropriate to use classical signal processing techniques to 

classify the targets. We used a support vector machine (SVM) for classification, as shown in 

figure 22. 



 

17 

3. Conclusions 

In this report, we presented the data collection done at the southwest border of United States 

during March 2012. We also presented the advances made in signal processing for personnel 

detection. The main focus had been on acoustic, seismic, and ultrasonic data processing. 

Acoustic data are processed to determine the presence of a human voice and the sounds due to 

footsteps. If the human voice is detected reliably, the cadence of the footsteps is ~1.5 Hz, and the 

energy distribution in the spectral bands determines it belongs to a person, the sensor fusion 

algorithm classifies the target as being a person with high confidence.  

The seismic sensor data are analyzed for cadence and the distribution of its harmonics are 

analyzed to determine if they belong to a person or an animal. Furthermore, the seismic 

signatures are classified using NMF to confirm whether they belong to a person or an animal. 

We can determine even if both people and animals are present at the same time since we separate 

their signals. A fusion algorithm combines both the results to assign an overall classification 

rating. Integration of the results over a period of time results in higher confidence in the 

classification. 

The ultrasonic sensor provides high fidelity Doppler data of arm, leg, and torso movements of 

people and animals. These Doppler returns are processed with the algorithms developed using 

physics-based phenomenological models to determine the classification of the targets. When the 

SNR is >6 dB, the classification is very accurate (within the 95% range.)  
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